Characterizing distance-regularity of graphs by the spectrum
نویسندگان
چکیده
We characterize the distance-regular Ivanov–Ivanov–Faradjev graph from the spectrum, and construct cospectral graphs of the Johnson graphs, Doubled Odd graphs, Grassmann graphs, Doubled Grassmann graphs, antipodal covers of complete bipartite graphs, and many of the Taylor graphs. We survey the known results on cospectral graphs of the Hamming graphs, and of all distance-regular graphs on at most 70 vertices. © 2006 Elsevier Inc. All rights reserved.
منابع مشابه
D-Spectrum and D-Energy of Complements of Iterated Line Graphs of Regular Graphs
The D-eigenvalues {µ1,…,µp} of a graph G are the eigenvalues of its distance matrix D and form its D-spectrum. The D-energy, ED(G) of G is given by ED (G) =∑i=1p |µi|. Two non cospectral graphs with respect to D are said to be D-equi energetic if they have the same D-energy. In this paper we show that if G is an r-regular graph on p vertices with 2r ≤ p - 1, then the complements of iterated lin...
متن کاملBounding cochordal cover number of graphs via vertex stretching
It is shown that when a special vertex stretching is applied to a graph, the cochordal cover number of the graph increases exactly by one, as it happens to its induced matching number and (Castelnuovo-Mumford) regularity. As a consequence, it is shown that the induced matching number and cochordal cover number of a special vertex stretching of a graph G are equal provided G is well-covered bipa...
متن کاملSome spectral and quasi-spectral characterizations of distance-regular graphs
This is a new contribution to the question: Can we see from the spectrum of a graph whether it is distance-regular? By generalizing some results of Van Dam and Haemers, among others, we give some new spectral and quasi-spectral characterizations of distance-regularity. In this area of research, typical results concluding that a graph is distance regular require that G is cospectral with a dista...
متن کاملThe Spectral Excess Theorem for Distance-Regular Graphs: A Global (Over)view
Distance-regularity of a graph is in general not determined by the spectrum of the graph. The spectral excess theorem states that a connected regular graph is distance-regular if for every vertex, the number of vertices at extremal distance (the excess) equals some given expression in terms of the spectrum of the graph. This result was proved by Fiol and Garriga [From local adjacency polynomial...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comb. Theory, Ser. A
دوره 113 شماره
صفحات -
تاریخ انتشار 2006